<u>Topic 6 – Energetics</u> <u>Revision Notes</u>

1) Introduction

- An enthalpy change is a change in heat energy measured at constant pressure.
- Enthalpy changes refer to the chemicals **not** the surroundings.
- The symbol for an enthalpy change is ΔH (Δ = change, H = heat energy)
- The units for enthalpy change are kJ mol⁻¹

2) Exothermic Reactions

- In exothermic reactions, the chemicals lose energy so ∆H is negative. The surroundings gain energy so feel hotter.
- In terms of a reaction with oxygen, **oxidation** is an exothermic process. Examples include:

 $\begin{array}{l} \mbox{Combustion} - \mbox{ burning fuels for heating and in engines e.g.} \\ \mbox{ } \$

 $\begin{array}{l} \mbox{Respiration} - \mbox{oxidation of carbohydrates in living things} \\ \mbox{C}_6\mbox{H}_{12}\mbox{O}_6 \ + \ 6\mbox{O}_2 \ \rightarrow \ 6\mbox{CO}_2 \ + \ 6\mbox{H}_2\mbox{O} \end{array}$

3) Endothermic Reactions

- In endothermic reactions, the chemicals gain energy so ΔH is positive. The surroundings lose energy so feel cooler.
- Endothermic reactions require an input of heat energy or they will stop.
- Examples of endothermic processes include:

Thermal decomposition of calcium carbonate $CaCO_3 \rightarrow CaO + CO_2$

Photosynthesis

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

4) Measuring Enthalpy Changes

- Measuring enthalpy changes by experiment is called calorimetry
- Calorimetry works by using the energy released or absorbed in a reaction to change the temperature of a known mass of water
- Calculating an enthalpy change from experimental results involves a two step process
- Firstly $\mathbf{q} = -\mathbf{mc}\Delta T/1000$, where m = mass of water in g, c= specific heat capacity of water (4.18 Jg⁻¹K⁻¹), ΔT = change in temperature)
- Secondly, $\Delta H = q/n$ where n = number of moles of reactant
- Enthalpy changes measured from calorimetry are smaller than the expected values because of heat loss to the apparatus and the environment
- Other reasons for differences from standard values are non-standard conditions and evaporation of water
- In the case of measuring enthalpies of combustion, differences from standard values can occur through incomplete combustion and evaporation of the fuel (if it is a liquid)

Example 1:

The combustion of 0.15g of ethanol, C_2H_5OH , in a spirit burner increased the temperature of 75 cm³ of water by 12.5°C. Calculate the enthalpy of combustion of ethanol in kJ mol⁻¹.

q = $-mc\Delta T/1000$ = $-75 \times 4.18 \times 12.5/1000$ = -3.919 kJn = 0.15/46= $3.26 \times 10^{-3} \text{ mol}$ ΔH = $-3.919/3.26 \times 10^{-3}$ = $-1202 \text{ kJ mol}^{-1}$

Example 2:

The heat capacity of a calorimeter and the water it contains is 400 J K⁻¹. A student burned 0.47g of ethanol, C_2H_5OH , and the heat produced increased the temperature of the calorimeter and contents from 19.0°C to 53.3°C. Calculate the enthalpy of combustion of ethanol.

q= $-c\Delta T/1000$ (m not needed if heat capacity rather than specific heat capacity)
= $-400 \times 34.3/1000$
= -13.72 kJn= mass/molar mass
= 0.47/46.0
= 0.0102 ΔH = q/n
= -13.72/0.102
= $-1343 \text{ kJ mol}^{-1}$

5) Enthalpy Changes

- Standard conditions for measuring enthalpy changes are a pressure of 100 kPa and a temperature of 298K
- Enthalpy change of combustion, ΔH_c, is the enthalpy change when one mole of a substance is completely burned in oxygen under standard conditions e.g.

$$C_5H_{12}(I) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(I)$$

- Some substances cannot be burnt and have zero enthalpy of combustion e.g. O₂, CO₂, H₂O
- Enthalpy change of formation, ΔH_f, is the enthalpy change when one mole of a substance is formed from its elements under standard conditions e.g.

$$5C(s) + 6H_2(g) \rightarrow C_5H_{12}(l)$$

• ΔH_f for elements is zero

8) <u>Mean Bond Enthalpy</u>

- This is the energy needed to break a covalent bond averaged over many different molecules
- Average bond enthalpies have a positive sign because energy is needed to break a bond
- The strength of a covalent bond depends on the strength of attraction between the shared pair of electrons and the positive nuclei of the atoms

9) <u>Calculating Enthalpy Changes</u>

- Hess's Law = enthalpy change is independent of route
- Enthalpy changes can be calculated in three ways, based on Hess's Law.
- The three ways can be used for to calculate any enthalpy change formation, combustion, other types of reaction
- The data provided determines which method to use
- If the <u>data</u> is enthalpy changes of formation, use:

$\Delta H = \Sigma \Delta H_f \text{ (products)} - \Sigma \Delta H_f \text{ (reactants)}$

• If the <u>data</u> is enthalpy changes of combustion, use:

$\Delta H = \Sigma \Delta H_c$ (reactants) - $\Sigma \Delta H_c$ (products)

• If the <u>data</u> is bond enthalpies, use:

$\Delta H = \Sigma$ (bonds broken) - Σ (bonds formed)

 Using average bond enthalpies gives less accurate results than the other two methods because bond enthalpies are average values from a range different compounds

Example - data is enthalpy of formation

Calculate the enthalpy change for the following reaction.

$$Li_2CO_3(s) \rightarrow Li_2O(s) + CO_2(g)$$

Enthalpies of formation (kJ mol⁻¹) $Li_2CO_3(s) -1216$, $Li_2O(s) -596$, $CO_2(g) -394$

Example - data is enthalpy of combustion

Calculate the enthalpy change for the following reaction.

 $3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$

Enthalpies of combustion (kJ mol⁻¹) C(s) -394, H₂(g) -286, C₃H₈(g) -2220

Example – data is bond energies Calculate the enthalpy change for the following reaction. $2HI(g) \rightarrow H_2(g) + I_2(g)$ Bond enthalpies (kJ mol⁻¹) H-I 299, H-H 436, I-I 151 $\Delta H = \Sigma \text{ (bonds broken)} - \Sigma \text{ (bonds formed)}$ $\Delta H = (299 \text{ x } 2) - (436 + 151)$ = 598 - 587 $= 11 \text{ kJ mol^{-1}}$